If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2-36x-13=0
a = 36; b = -36; c = -13;
Δ = b2-4ac
Δ = -362-4·36·(-13)
Δ = 3168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3168}=\sqrt{144*22}=\sqrt{144}*\sqrt{22}=12\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-12\sqrt{22}}{2*36}=\frac{36-12\sqrt{22}}{72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+12\sqrt{22}}{2*36}=\frac{36+12\sqrt{22}}{72} $
| 17x-3=(7x+3)*2 | | 0=8/3x-16 | | 4b(2b=5)-2(3b-1) | | 700–35n=450+15n | | 30=18h=25+20h | | 3x+45=15 | | 2x+9.2=22 | | 2m(m+5)=0 | | 8x-2=7x-7 | | -6(9x+5)-3x+4x=-408=x | | (x+1)^2=100 | | 4m-36=14 | | -7m^2+9m-8=0 | | 2x^2-17x-240=0 | | 43=-5t-2 | | -2+26=5b+5.5 | | (x2+16)(x2–16)= | | 4(x+1.92)=3x | | 5(c-15)=-55 | | 0.5x+4=2x-10+14 | | -5/2+5/4=5/3x-2/5x | | k/8+7=-71 | | (5x+7)+(5x+7)+(4x-16)=180 | | F(x-1)=3x^2+2×+4 | | a/3+11=25 | | 9x+21=10x | | 5x-3=-3-39 | | 1=4x-2x^2 | | x÷4+5=2.75 | | k/7+6=17 | | 17c−7c=20 | | 2^2x+4=60 |